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A B S T R A C T   

Previous studies indicate that cyanobacterial harmful algal bloom (cyanoHAB) frequency, extent, and magnitude 
have increased globally over the past few decades. However, little quantitative capability is available to assess 
these metrics of cyanoHABs across broad geographic scales and at regular intervals. Here, the spatial extent was 
quantified from a cyanobacteria algorithm applied to two European Space Agency satellite platforms—the 
MEdium Resolution Imaging Spectrometer (MERIS) onboard Envisat and the Ocean and Land Colour Instrument 
(OLCI) onboard Sentinel-3. CyanoHAB spatial extent was defined for each geographic area as the percentage of 
valid satellite pixels that exhibited cyanobacteria above the detection limit of the satellite sensor. This study 
quantified cyanoHAB spatial extent for over 2,000 large lakes and reservoirs across the contiguous United States 
(CONUS) during two time periods: 2008–2011 via MERIS and 2017–2020 via OLCI when cloud-, ice-, and snow- 
free imagery was available. Approximately 56% of resolvable lakes were glaciated, 13% were headwater, iso
lated, or terminal lakes, and the rest were primarily drainage lakes. Results were summarized at national-, 
regional-, state-, and lake-scales, where regions were defined as nine climate regions which represent climatically 
consistent states. As measured by satellite, changes in national cyanoHAB extent did have a strong increase of 
6.9% from 2017 to 2020 (|Kendall’s tau (τ)| = 0.56; gamma (γ) = 2.87 years), but had negligible change (|τ| =
0.03) from 2008 to 2011. Two of the nine regions had moderate (0.3 ≤ |τ| < 0.5) increases in spatial extent from 
2017 to 2020, and eight of nine regions had negligible (|τ| < 0.2) change from 2008 to 2011. Twelve states had a 
strong or moderate increase from 2017 to 2020 (|τ| ≥ 0.3), while only one state had a moderate increase and two 
states had a moderate decrease from 2008 to 2011. A decrease, or no change, in cyanoHAB spatial extent did not 
indicate a lack of issues related to cyanoHABs. Sensitivity results of randomly omitted daily CONUS scenes 
confirm that even with reduced data availability during a short four-year temporal assessment, the direction and 
strength of the changes in spatial extent remained consistent. We present the first set of national maps of lake 
cyanoHAB spatial extent across CONUS and demonstrate an approach for quantifying past and future changes at 
multiple spatial scales. Results presented here provide water quality managers information regarding current 
cyanoHAB spatial extent and quantify rates of change.   

1. Introduction 

Cyanobacterial harmful algal blooms (cyanoHABs), as defined in 
Smayda (1997), have adverse effects on the environment, animal, and 

human health (Paerl and Huisman, 2009; Kahru and Elmgren, 2014; 
Matthews, 2014; Wynne and Stumpf, 2015; De Bakker et al., 2017; 
Svirčev et al., 2017) and have been found throughout the United States 
(Loftin et al., 2016). CyanoHABs may produce toxins and cause food web 
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alterations, nuisance odors, hypoxia, and increased turbidity, leading to 
decreased light penetration in lake ecosystems (Kutser et al., 2006; Paerl 
et al., 2011; Michalak et al., 2013). Although studies have indicated an 
“apparent global increase” (Hallegraeff, 1993) in cyanoHABs over the 
past few decades (Paerl and Paul, 2012; Taranu et al., 2015), data are 
not available to quantify an increase of spatial extent and temporal 
changes of these events on a global or continental scale (Chorus and 
Bartram, 1999). 

The limited information on the occurrence and spatial extent of 
cyanoHABs in U.S. lakes poses a future risk to the environment and 
public health. Assessment methods are needed to provide timely infor
mation in regions experiencing cyanoHABs as well as in regions not yet 
affected by blooms. Information on cyanoHAB location and extent is 
needed for routine monitoring and management of water quality and 
resources at the state level (Suter, 2007). 

Many studies have used field, laboratory, and simulation models to 
quantify spatio-temporal changes in inland cyanobacterial blooms 
(Komatsu et al., 2007; Paerl and Huisman, 2008; Paerl and Huisman, 
2009; Elliott, 2010; Deng et al., 2014). However, these studies often 
focus on a single, relatively large system (Verschuren et al., 2002; Chen 
et al., 2003; Duan et al., 2009; Kahru and Elmgren, 2014), making it 
difficult to generalize results to multiple lakes at the sub-continental 
scale (Li and He, 2014). Changes in cyanoHABs over time are often 
poorly resolved due to the lack of historical field data and comparable 
analytical approaches over similar spatial and temporal scales. Multi- 
scale assessments that are timely, standardized, and cost-effective 
would be useful to better evaluate water quality, biological integrity, 
and management actions on local, regional, and national scales. Remote 
sensing offers a capability that provides an additional line of scientific 
evidence to help guide and complement field efforts and advances a 
more comprehensive means of assessment for the parameters that sat
ellites can measure. 

Satellite remote sensing can be used to effectively quantify cyano
HAB temporal frequency (Clark et al., 2017; Coffer et al., 2021a), spatial 
extent (Matthews, 2014; Urquhart et al., 2017), magnitude (Mishra 
et al., 2019), and lake occurrence (Coffer et al., 2020) on a routine basis 
for multiple waterbodies when sufficient cloud-, ice-, and snow-free 
scenes are available. Investigators have started using remotely sensed 
data to explore temporal and spatial changes in cyanoHABs across lakes 
and coastal systems at high spatial and temporal resolutions (Duan et al., 
2009; Gómez et al., 2011; Kahru and Elmgren, 2014; Matthews and 
Odermatt, 2015; Palmer et al., 2015a; Wynne and Stumpf, 2015; Kahru 
et al., 2016). Ho et al. (2019) used three decades of imagery from the 
NASA/USGS Landsat 5 satellite to determine long-term trends in sum
mertime phytoplankton blooms in 71 large global lakes. Coffer et al. 
(2021b) used imagery from ESA’s Ocean and Land Colour Instrument 
(OLCI) to analyze short-term changes from 2016 to 2020 in cyano
bacterial abundance at drinking water sources across the United States. 
However, none of these studies have specifically quantified the change 
in spatial extent of cyanoHABs with all U.S. resolvable lakes at different 
scales. 

Here, we develop the first available estimates of satellite-derived 
cyanoHAB spatial extent across the contiguous United States (CONUS) 
at national-, regional-, state-, and lake-scales using eight years of satel
lite data spanning 2008 through 2011 and 2017 through 2020. The 
analysis of drivers was beyond the scope of this effort and has been re
ported elsewhere (Myer et al., 2020; Iiames et al., 2021). This work 
builds upon Urquhart et al. (2017) in which spatial extent was analyzed 
for the states of California, Florida, and Ohio from 2008 through 2011 
using data from ESA’s MEdium Resolution Imaging Spectrometer 
(MERIS) satellite sensor. In February 2016, ESA’s Copernicus Sentinel- 
3A OLCI sensor was launched followed by Sentinel-3B in April 2018, 
both of which are functionally comparable to MERIS. Quantification of 
spatial extent for 2017 through 2020 using data from OLCI is provided 
here in the main manuscript as a current-day demonstration while 
supplemental material includes results from MERIS spanning 

2008–2011. This study addressed the following research objectives: (1) 
quantify the spatial extent of satellite detected cyanoHABs at the na
tional-, regional-, state-, and lake-scales during 2017–2020 and 
2008–2011; (2) quantify the short-term change in spatial extent at na
tional-, regional-, and state-scales from 2017 to 2020 and 2008 to 2011; 
and (3) use cross validation to assess the robustness of observed short- 
term changes in cyanoHAB spatial extent. 

2. Materials and methods 

2.1. Satellite observations 

The cyanobacteria index (CIcyano) was calculated using a spectral 
shape algorithm initially described by Wynne et al. (2008), then revised 
and updated by Lunetta et al. (2015) based on new conditions from 
Matthews et al. (2012). A detailed description of the algorithm evolution 
is described in Section 2.1 of Coffer et al. (2020). Briefly, spectral bands 
centered at 665 nm, 681 nm, and 709 nm are used to assess cyano
bacterial bloom biomass, and those centered at 620 nm, 665 nm, and 
681 nm are used as exclusion criteria to prevent the quantification of 
non-cyanobacterial blooms. Throughout this study, a pixel is classified 
as a cyanobacterial detection if the CIcyano algorithm returns any 
detectable value (CIcyano > 0.0001), indicating cyanobacteria in con
centrations greater than the detection limit of the sensor. 

Extensive field validation of the CIcyano algorithm was previously 
demonstrated across Ohio, Florida, Rhode Island, Massachusetts, New 
Hampshire, Vermont, Connecticut, and Maine (Lunetta et al., 2015; 
Tomlinson et al., 2016). Additionally, Lunetta et al. (2015), revised by 
Clark et al. (2017), found good association between MERIS-derived 
CIcyano values and corresponding in situ cyanoHAB abundance values 
(cells mL− 1; mean absolute percentage error = 28.6%). Validation of 
CIcyano via a mobile device application performance test showed good 
correspondence in Oregon, California, Idaho, New Jersey, New York, 
Nevada, Utah, and Vermont with 25 historical health advisories 
(Schaeffer et al., 2018). The CIcyano algorithm has also been used for 
guiding health advisories issued in Utah (Utah DEQ, 2018a, b), 
Wyoming (Wyoming DEQ, 2018a, b, c, 2019a, b, c, d, e, f, g, h), and New 
York (Schellhammer, 2019). CIcyano algorithm performance was vali
dated across CONUS lakes by evaluating the agreement between satellite 
observations and previously established ecological patterns, where 
cyanobacteria followed the well-known temporal pattern of blooms 
(Coffer et al., 2020). The algorithm has also been validated using state 
reported toxin data (84% overall agreement; Mishra et al., 2021), state 
reported events and advisories (73% overall agreement; Whitman et al., 
2022), chlorophyll-a from the Water Quality Portal (60% mean absolute 
error; Seegers et al., 2021), and with visual observations from the fourth 
Unregulated Contaminant Monitoring Rule of algal bloom presence and 
absence near drinking water intakes (94% overall agreement; Coffer 
et al., 2021b). Although CIcyano has been predominantly used in the 
United States, it has also been demonstrated in the Caspian Sea (Moradi, 
2014), Lake Balaton, Hungary (Palmer et al., 2015b), and Lakes Taihu 
and Chaohu, China (Jin et al., 2017). 

A conceptual representation of the methods described in Sections 2.1 
through 2.4 is provided in Fig. 1. Weekly satellite data were retrieved 
over CONUS from the OLCI sensor spanning January 2017 through 
December 2020 at a spatial resolution of 300 m (Seegers et al., 2021). 
Additionally, archived weekly satellite data were obtained over CONUS 
from the functionally similar MERIS sensor onboard the Envisat satellite 
for January 2008 through December 2011. While the MERIS sensor was 
intermittently available for CONUS from 2002 through 2007, contin
uous, full-resolution data were only available for CONUS between 2008 
and 2012. In April 2012, the Envisat mission ended after loss of 
communication with the satellite, and no comparable sensor was 
available until Sentinel-3A was launched in 2016. MERIS and OLCI data 
were first obtained by NASA from ESA through a data sharing agreement 
and were then processed by the NASA Ocean Biology Processing Group 
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(OBPG; https://oceancolor.gsfc.nasa.gov/projects/cyan/) using their 
standard satellite ocean color software package (l2gen; distributed 
publicly within the SeaWiFS Data Analysis System, SeaDAS, https 
://seadas.gsfc.nasa.gov) and a Shuttle Radar Topography Mission 
(SRTM)-derived 60-m land mask with updates to include missing lakes 
and reservoirs in Rhode Island and Massachusetts (Urquhart and 
Schaeffer, 2020). The SRTM land mask and SeaDAS processing are static 
in relation to waterbody size and did not account for periods of drought 
or flood during the study period. Flags to indicate potential contami
nation due to cloud, cloud shadow, and adjacency effects from neigh
boring land pixels, and to identify snow- or ice-covered waterbodies, 
were also applied (Wynne et al., 2018; Urquhart and Schaeffer, 2020). 
Therefore, these quality flags mask and exclude land contaminated 
pixels. 

NASA OBPG merged Sentinel-3A and Sentinel-3B into the processing 
stream beginning May 15, 2018. Sentinel-3 satellites have the same 
orbits with Sentinel-3B 140◦ out of phase with Sentinel-3A, effectively 
doubling the number of observations at any given location. To avoid 
potentially erroneous change detection results due to increased obser
vations from the inclusion of Sentinel-3B, daily observations within the 
Sentinel-3A orbital path were retained and those outside the Sentinel-3A 
orbital path were removed. Orbital prediction files were accessed as 
shapefiles from EUMETSAT (access date November 21, 2021, htt 
ps://www.eumetsat.int/s3a-3b-orbit-predictions-available). Daily flag
ging removed Sentinel-3B observations except where orbital paths 
overlapped on the same day, as the merged Sentinel-3 product is pro
cessed to yield the maximum value between the two sensors in the case 
of same-day overlap. In those cases, the difference between the two 
sensors was assumed to be minimal as collection times were nearly 
contemporaneous (within approximately 20–45 min). Therefore, all 
results were considered to be only from Sentinel-3A except for a specific 
test to demonstrate the effect of merging Sentinel-3A and -3B in section 
3.6. 

For each week spanning the 2008–2011 and 2017–2020 time pe

riods, a spatial mosaic composed of the 54 individual MERIS and OLCI 
tiles covering CONUS was generated using the maximum CIcyano value 
for each pixel occurring during that 7-day period. Then, a one-pixel 
buffer along the land–water interface was applied and affected satel
lite pixels were flagged to prevent potential straylight and bottom 
reflectance contamination (Urquhart and Schaeffer, 2020). Lake water 
pixels were extracted using the National Hydrography Dataset Plus 
(NHDPlus) version 2.0 shapefiles (McKay et al., 2012) for each water
body. All NHDPlus features categorized as lakes and reservoirs, referred 
to hereafter exclusively as lakes, were selected using the U.S. Environ
mental Protection Agency’s 2012 National Lakes Assessment (NLA) site 
evaluation guidelines. Waterbodies classified as intermittent, estuarine, 
rivers, streams, or ponds, or with a surface area < 1 ha were excluded 
from further analysis based on NLA criteria. The categorization of lakes, 
based on NHDPlus, included coastal lagoon systems. Lakes in the 
NDHPlus shapefile with a minimum of three water pixels remaining 
were included and considered MERIS/OLCI resolvable lakes. A total of 
2,192 NHDPlus waterbodies remained and were included in this study. 
The Great Lakes were excluded from this study, because other programs, 
such as the NOAA Lake Erie HAB Forecast System, already focus on these 
lakes (Stumpf et al., 2012; Wynne and Stumpf, 2015). Water remaining 
after land exclusion is here termed resolvable water. Total resolvable 
water area (km2)—the area considered for analysis—was calculated as 
the number (n) of resolvable water pixels multiplied by the spatial res
olution (300 m × 300 m) of the MERIS and OLCI sensors (Eq. (1)): 

Water area
(
km2) = n of valid pixels × 0.09 km2 (1) 

Approximately 56% of the 2,192 NHDPlus resolvable lakes were 
glaciated, 13% were headwater, isolated, or terminal lakes, the rest were 
drainage lakes, as defined by the LAGOS program (Cheruvelil et al., 
2021; Smith et al., 2021). Dammed lakes accounted for 13%, and over 
99% of the resolvable lakes were classified as a lake, where a lake was 
defined in NHDPlus as a standing body of water with a predominantly 
natural shoreline surrounded by land. Additionally, < 1% of resolvable 

Fig. 1. A representation of the approach used for data processing and statistics described in detail from Sections 2.1 through 2.4.  
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waterbodies were classified as a reservoir, defined as a constructed basin 
formed to contain water. Most resolvable lakes were located within the 
Eastern Temperate Forest (39.5%), Northern Forest (22.8%), and Great 
Plains (20.8%) ecoregions. Ecoregions were defined as unique compo
sitions of biotic and abiotic factors such as minerology, soil type, vege
tation, climate, land use, and hydrology that affect ecosystem quality 
and integrity (Omernik, 1995; Omernik and Griffith, 2014). Approxi
mately 8.7% of lakes were in the Northwestern Forested Mountains, 
4.7% in the North American Desert, 1.9% in the Mediterranean Cali
fornia, 1.0 % in the Marine West Coast Forest, and 0.5% in the Tropical 
Wet Forest and Temperate Sierras ecoregions. 

2.2. Computing cyanobacterial spatial extent 

The categorical approach applied here to CIcyano results provided a 
simple binary response of non-detection or detection of cyanoHABs, 
thereby reducing the need for absolute accuracy on concentration from 
the CIcyano algorithm, similar to Coffer et al. (2020; 2021a). Weekly data 
(Sunday through Saturday) generated by NASA OBPG were aggregated 
into monthly composites containing mean CIcyano values for each pixel; 
the final day of the seven-day composite (Saturday) determined which 
month the weekly composite was allocated. Then, for each monthly 
composite, cyanobacterial spatial extent was calculated as the percent
age of valid water pixels—that is, resolvable water pixels free of clouds 
or other quality flags—with cyanobacteria detection (Eq. (2)). 

Spatial extent (%) =
n of pixels with detectable CIcyano

n of valid pixels
× 100% (2) 

Spatial extent was also computed for each individual lake, state, and 
region by cropping national monthly composites to each respective 
boundary. Regions were defined by the National Center for Environ
mental Information (Karl and Koss, 1984) as nine climatically consistent 
regions across CONUS (Fig. S1). In the example for an individual lake 
shown in Fig. 2, there were 23 satellite pixels (2.07 km2) that were 
resolvable, 18 (1.62 km2) of which were valid (i.e., not quality flagged). 
Of those 18 valid satellite pixels, 9 satellite pixels (0.81 km2) were above 
the detection limit of the sensor and thus were considered cyanobacte
rial bloom pixels, yielding a cyanoHAB spatial extent value of 50%. 
When summarizing across a year or an entire satellite mission time 
period (2017–2020 or 2008–2011), spatial extent was calculated as the 
median of all monthly spatial extent values within that period. 

2.3. Statistical methods and change assessment 

Temporal changes of spatial extent were estimated at national-, 
regional-, and state- scales. A rank-based nonparametric seasonal Mann- 
Kendall (MK) statistic (Kendall, 1938; Mann, 1945) was applied to 
monthly spatial extents to identify changes in cyanoHAB surface area 
extent. The seasonal MK test is a modification of the Kendall test for 

change that allows for seasonality, heterogeneity, and serial dependence 
in observations (Hirsch and Slack, 1984). The seasonal Kendall slope 
estimator (Hirsch et al., 1982), an extension of the Theil-Sen slope (Sen, 
1968; Theil, 1992), was used to estimate the magnitude of change in the 
form of a slope (change per unit time). The seasonal Kendall slope 
estimator is nonparametric, computed as the median of all two-point 
slopes computed within each season, where our analysis defined sea
sons as individual months. Slopes are presented as the change in spatial 
extent over each satellite time period considered, either 2008–2011 or 
2017–2020, along with the MK test statistic, Kendall’s tau (τ). Kendall’s 
τ (τ hereafter) indicates the strength of the monotonic changes (Akoglu, 
2018; Helsel et al., 2020), with |τ| < 0.2, 0.2 ≤ |τ| < 0.3, 0.3 ≤ |τ| < 0.5, 
|τ| ≥ 0.5, respectively, indicating negligible, weak, moderate, and strong 
changes over time as described in Cohen (1988). 

As an additional statistic to measure the strength of observed 
changes, the effect size metric gamma (γ) was computed. The γ statistic 
quantifies the number of observations needed for an observed change to 
be sustained despite residual variability in the data (Eq. (3)). Because 
both of the time series considered for change detection spanned four 
years (MERIS during 2008–2011, OLCI during 2016–2020), γ is pre
sented here in units of years, providing insight regarding how long the 
time series would need to be to increase confidence in an observed 
change; if γ is less than the time period of observations (4 years), the 
strength of the observed change exceeded residual variability in the 
data. The γ statistic has been presented in several environmental studies 
to quantify the number of years of observations needed to increase 
confidence in an observed trend: Urquhart et al. (2017) observed trends 
in cyanobacteria spatial extent for the states of Florida and California; 
Coffer et al. (2021b) assessed trends in cyanobacterial frequency at 
drinking water sources across CONUS; Coffer and Hestir (2019) evalu
ated changes in carbon storage and environmental conditions at Arctic 
wetlands; and Henson et al. (2010) detected global changes in ocean 
chlorophyll and productivity. The γ statistic was computed as: 

γ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

1
(y− ŷ)2

n− 1

√

|m|
(3)  

where n is the sample size, ŷ is the residual of y, and m is the seasonal 
Kendall slope estimator. 

As mentioned in Section 2.1, Sentinel-3A observations were retained 
using the orbital path of the sensor; however, state-scale cyanoHAB 
spatial extent was also computed using observations from both Sentinel- 
3A and -3B to assess the effect of increased observations on trend results. 
Increased temporal coverage due to the inclusion of Sentinel-3B in
creases the opportunity to record higher cyanoHAB spatial extents 
because methods used in this study retained the maximum CIcyano value 
for each weekly composite. The effect of increased temporal coverage 
was tested by comparing Kendall’s τ and the Kendall slope estimator for 
state-scale results computed using just Sentinel-3A and using combined 

Fig 2. A conceptual diagram illustrating the computation of resolvable water area and cyanobacterial spatial extent. For each (A) resolvable lake, (B) resolvable 
water area was computed as the number of 300-m satellite pixels within the lake, and (C) spatial extent was computed as the number of pixels with detectable 
cyanobacteria (“bloom”) divided by the number of valid pixels (sum of “No bloom” and “Bloom”). 
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Sentinel-3A and -3B. Resulting change assessment statistics were 
compared using the non-parametric Mann-Whitney U test (Wilcoxon, 
1945; Mann and Whitney, 1947). Results of the Mann-Whitney U test 
were further distilled into an effect size following the Glass (1966) 
formulation of rank-biserial correlation (rrb) which was then also clas
sified according to Cohen (1988) where 0.1 ≤ |rrb| < 0.3 indicates a 
small difference between samples, 0.3 ≤ |rrb| < 0.5 indicates a moderate 
difference, and |rrb| ≥ 0.5 indicates a large difference. All data were 
processed and analyzed using R statistical software (R Core Team, 2015) 
and the rkt package was used for change assessment (Marchetto, 2017). 

2.4. Sensitivity to missing observations 

Observations over short time periods, such as 4-year intervals in this 
study, may be influenced by interannual variability, episodic bloom 
events, and data availability due to cloud cover. Therefore, we tested the 
robustness of our change assessment by randomly omitting weekly sat
ellite composites prior to monthly aggregation to demonstrate the sta
bility of change results at the national- and state-scales. For each year 
spanning 2017–2020, 10, 20, and 30% of weekly satellite composites 
were randomly omitted without replacement and spatial extent was 
recomputed. For each incremental increase in data omission, a new 
subset of weekly composites was excluded. Data omission was replicated 
ten times and mean spatial extent was retained to account for sampling 
variability. Then, the seasonal MK test was reassessed, and the resulting 
Kendall τ test statistic was demonstrated under increased data exclusion. 

3. Results 

3.1. Resolvable lakes and water area 

There were 2,192 NHDPlus lakes that were resolvable with 300-m 
MERIS/OLCI imagery. The total resolvable surface area of these lakes 
varied over time, resulting from missing data due to clouds, snow, and 
ice as well as invalid data along the land/water boundary. Across the 
2017–2020 time period, total resolvable surface area had a median of 
110,793 km2 (Fig. 3), a minimum of 47,833 km2, and a maximum of 
114,361 km2 (Fig. S2). Spatially, all contiguous states, apart from 

Delaware and West Virginia, had MERIS/OLCI resolvable lakes con
taining at least three non-land-adjacent satellite pixels. Individual state 
lake counts ranged from three to five lakes in Connecticut (CT), Mary
land (MD), and Rhode Island (RI), to 393 lakes in Minnesota (MN). The 
median surface water area resolved by OLCI for each state from 2017 to 
2020 ranged from 5 km2 in CT to 14,454 km2 in MN. 

3.2. National-scale spatial extent 

The monthly mean cyanoHAB spatial extent for CONUS is shown for 
2017–2020 in Fig. 4 and 2008–2011 in Fig. S3. During 2017–2020, 
national-scale spatial extent values ranged from a minimum of 17.9% to 
a maximum of 41.6%, with a median value of 30.7%. CyanoHAB spatial 
extent had a strong (τ = 0.56, γ = 2.87 years) increase of 6.92% over the 
time period considered, as the seasonal Kendall slope estimator indi
cated an increase from 26% at the beginning of 2017 to 33% by the end 
of 2020. During 2008 to 2011, cyanoHAB spatial extent had a negligible 
(τ = − 0.03) decrease of − 0.7%. As expected, the pattern of observed 
mean monthly cyanoHAB spatial extent was strongly phased with 
summer and autumn months, with maximum spatial extent occurring 
during late summer or early autumn (Fig. 4). The shapes of the seasonal 
periodicity were somewhat bimodal, with smaller peaks in late winter or 
spring preceding the summer maxima. Each summer peak was followed 
by a general decrease in late autumn, and the minimum spatial extent 
occurred in winter each year. 

3.3. Regional-scale spatial extent 

From 2017 to 2020, OLCI imagery indicated that all regions 
increased in cyanobacterial spatial extent, although the strength of these 
changes varied (Table 1). In the Northeast, Southwest, and West regions, 
spatial extent had weak (0.2 ≤ |τ| < 0.3) increases of 10.8%, 1.76%, and 
3.88% respectively, while the South and Southeast regions had moder
ate (0.3 ≤ |τ| < 0.5) increases of 8.58% and 10.93%, respectively. 
Spatial extent in the Northwest, Northwest Rockies and Plains, Ohio 
Valley, and Upper Midwest regions exhibited negligible (|τ| < 0.2) 
changes during 2017–2020. OLCI period γ ranged from 3.55 to 17.22 
years, with the exception of the Ohio Valley, which required over 100 

Fig 3. Median satellite resolvable water area (km2) for 2017–2020 for each state at a spatial resolution of 300 m. Each state is represented as a hexagon labeled with 
two-letter state abbreviation. WV and DE are presented in gray because they have no satellite resolvable water at a spatial resolution of 300 m. Below each two-letter 
state abbreviation is the number of individual state NHDPlus lakes. Lakes that fell along the boundary of more than one state were counted for each state they 
intercepted; therefore, the total number of lakes shown in this figure totals 2,266, more than the 2,192 lakes resolvable with 300-m MERIS and OLCI imagery. 
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years for the observed trend to outweigh variability in the data. During 
2008–2011, MERIS imagery indicated that nearly all regions had 
negligible (|τ| < 0.2) changes in the monthly spatial extent, the only 
exception being the Southwest region where spatial extent decreased by 
− 4.52% over the period considered with a weak τ of − 0.25 (Table S1). 
MERIS period γ ranged from 3.98 to 49.14 years. 

3.4. State-scale spatial extent 

During 2017–2020, cyanobacterial spatial extent values and stan
dard deviations tended toward lower values with no states falling in the 
highest quarter of potential values (76–100% spatial extent), and 26 
states falling in the lowest quarter (0–25% spatial extent; Fig. 5A). Eight 
states had a median spatial extent at or >50%: 50% in Mississippi, 52% 
in Rhode Island, 56% in Maryland, 59% in North Carolina, 61% in 
Wisconsin, 66% in Ohio, 68% in Oregon, and 71% in Florida. Spatial 
extent variability was expressed in terms of standard deviation and 
tended to be highest in states with either high or low resolvable water 
area, such as in the Upper Midwest states and the Northeast states 
(Fig. 5B). It is important to note that in the northern latitude states, 
spatial extent can be biased toward higher values due to missing data 
from snow and ice masking during the winter. However, Coffer et al. 
(2021a, see Table 1) found only negligible to small effect sizes in cya
nobacterial bloom frequency caused by limited wintertime data in most 
regions (Cohen’s d between 0.00 and 0.12) with exceptions in the 
Northwest Rockies and Plains region, which was largely biased by the 

exclusion of wintertime data (Cohen’s d = 0.53), and the Ohio Valley 
and Southeast regions, which were moderately biased (Cohen’s d = 0.39 
and 0.42, respectively). 

During 2008–2011, state results were more evenly distributed across 
potential values, with six states falling in the highest quarter (76–100% 
spatial extent) and five states falling in the lowest quarter (0–25% 
spatial extent; Fig. S4A). States with median spatial extents in the 
highest quarter during 2008–2011 were Florida (91%), Oregon (83%), 
Arizona (81%), Mississippi (80%), and both Illinois and Ohio (75%). 
States with median spatial extents in the lowest quarter during 
2008–2011 were Kentucky (10%), Alabama (13%), Tennessee (19%), 
South Carolina (23%) and Georgia (24%). Variation tended to be lower 
in the MERIS 2008–2011 dataset than the OLCI 2017–2020 dataset with 
the highest standard deviations in states that tended to have low 
resolvable water area (Fig. S4B). 

The 2017–2020 change in spatial extent for each state is shown in 
Fig. 6 and Table 2. During 2017–2020, a strong increase (|τ| ≥ 0.5) in 
spatial extent was observed in New Jersey (24.75%) and Louisiana 
(17.8%) with γ of 2.84 and 3.14 years, respectively. In decreasing order 
of change in spatial extent over the time period, Massachusetts 
(42.38%), Florida (15.06%), New Hampshire (14.22%), Maine 
(10.73%), Michigan (10.5%), Oregon and Arizona both at 8.09%, Ver
mont (4.6%), South Dakota (4.01%), and Montana (3.98%) all increased 
with moderate strength (0.3 ≤ |τ| < 0.5) with γ between 2.33 and 8.07 
years. Arkansas, Indiana, Iowa, Mississippi, North Dakota, Ohio, Penn
sylvania, Tennessee, and Texas decreased; however, all had changes 
with negligible (|τ| < 0.2) to weak (0.2 ≤ |τ| < 0.3) strengths with γ 
between 6.45 and 83.6 years. 

The 2008–2011 changes in spatial extent for each state is shown in 
Fig. S5 and Table S2. Total MERIS 2008–2011 detectable spatial extent 
in Mississippi increased with moderate strength (τ = 0.33, γ = 5.45 
years) by 12.91% over the time period considered. Conversely, Louisi
ana and Maine both exhibited a decrease in spatial extent by − 16.89% 
and − 12.87%, respectively, over the time period with moderate strength 
(τ = − 0.31 and − 0.37; γ = 4.53 and 8.84). All other states had either 
negligible or weak strength changes. 

State spatial extent values were also quantified for each individual 
year during 2017–2020 using OLCI imagery (Fig. 7) and during 
2008–2011 using MERIS imagery (Fig. S6), independent of change rate 
calculations. In 2017, only Wisconsin, Ohio, Oregon, Maryland, North 
Carolina, Mississippi, and Florida were in the third quarter and 30 states 
were in the lowest quarter of spatial extent. In 2018, Florida increased to 
the highest quarter and remained there until 2020. Illinois and Rhode 
Island entered the third quarter in 2018 and Rhode Island remained in 
this quarter through 2020. The number of states that remained in the 
lowest quarter decreased by 20% from 2017 to 2020. 

As supported by the analysis for 2008–2011, there were few changes 
in median annual spatial extent across the MERIS archive (Fig. S6). 
Although eight states were in the highest quarter in 2008, three of these 

Fig. 4. Monthly spatial extent (%) of any detectable cyanoHAB for CONUS for 2017–2020. Shaded plot regions delineate meteorological seasons. The dashed line 
represents the seasonal Kendall slope estimator accompanying a seasonal Mann-Kendall test applied to monthly observations. See Supplemental Fig. S3 for 
years 2008–2011. 

Table 1 
Seasonal Mann-Kendall statistics for changes in monthly cyanobacteria spatial 
extent spanning 2017–2020 for each CONUS region as defined by Karl and Koss 
(1984). Bold values represent moderate (0.3 ≤ |τ| < 0.5) through strong (|τ| ≥
0.5) Kendall τ strength. Change in spatial extent over time period is generated 
from the seasonal Kendall slope estimator and represents the change in spatial 
extent (%) over the entire time period spanning 2017–2020. The γ statistic is an 
estimate of the number of years of observations required for the observed change 
to outweigh variability in the data. See Supplemental Table S2 for years 
2008–2011.  

Region Sample 
size 

Change in spatial 
extent over time period 

Kendall’s 
τ 

γ (yr) 

Northeast 48  10.8%  0.22 4.51 
Northwest 48  2.84%  0.19 14.96 
Northwest Rockies 

and Plains 
48  1.89%  0.19 15.03 

Ohio Valley 48  0.1%  0.01 >

100 
South 48  8.58%  0.36 3.55 
Southeast 48  10.93%  0.31 3.91 
Southwest 48  1.76%  0.22 14.6 
Upper Midwest 47  5.08%  0.15 17.22 
West 48  3.88%  0.28 8.13  
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dropped to the third quarter by 2009 and another dropped to the third 
quarter in 2010. Five states were in the highest quarter for the entire 
time period: Oregon, Arizona, Mississippi, Ohio, and Florida. Similarly, 
those in the lowest quarter remained relatively stable throughout 
2008–2011 as Kentucky, Tennessee, and Alabama consistently had low 
cyanobacterial spatial extent. 

3.5. Lake-scale spatial extent 

Each resolvable lake’s spatial extent was quantified annually during 
2017–2020 (Fig. 8; Fig. S7-S9) and 2008–2011 (Fig. S10-S13). The lakes 
in the lowest quarter with spatial extent 0–25% decreased across both 
time periods, from 1,305 lakes in 2017 to 990 lakes in 2020, and from 
719 lakes in 2008 to 507 lakes in 2011. The count of lakes in the two 
middle quarters increased between 2017 and 2020, but remained rela
tively constant between 2008 and 2011. The lake count in the upper 
quarter increased across both time periods, from 448 to 519 lakes be
tween 2017 and 2020, and from 670 to 978 lakes between 2008 and 
2011. Monthly spatial extent variation from 2017 through 2020 was 
demonstrated for select lakes including Utah Lake, Lake Champlain, and 
Falls Lake (Fig. S14). 

3.6. Effect of missing data and integration of Sentinel-3A and -3B 

To test the influence of inter-annual variability in cloud cover and 
anomalous bloom events on the strength of the spatial change results, we 
randomly omitted CONUS weekly composites throughout the 
2017–2020 period prior to monthly binning. National- and state-scale 
changes were reassessed. Randomly omitting data changed the 
strength from strong to moderate at the national-scale (Table 3). When 
all data were used, cyanobacterial spatial extent across CONUS 
increased with high strength (τ = 0.56). After omitting 10, 20, and 30% 
of weekly composites, the τ strength remained moderate (τ = 0.47, 0.44, 
0.44). 

At the state-scale, results were notably similar across increasing 
levels of data removal (Table 3). Of the 46 CONUS states that contain at 
least one MERIS/OLCI resolvable lake, 35 states had τ values that were 
either consistently moderate to high (|τ| ≥ 0.3; bolded values) or 
negligible to low (|τ| < 0.3; non-bolded values) across all levels of data 
omission. For several states, τ increased with increased data omission, 
causing some states to shift from low strength to moderate strength. For 
example, Rhode Island exhibited an increase in cyanobacteria spatial 
extent from 2017 to 2020 with weak strength (τ = 0.29) when all data 
were used; however, after randomly omitting 10, 20, and 30% of weekly 
composites, τ increased in strength to 0.33, 0.39, and 0.33, although τ 
did not monotonically increase with increasing data omission. Only two 

Fig. 5. (A) Median and (B) standard deviation spatial extent for each CONUS state for 2017–2020. Each state is represented as a hexagon labeled with each state’s 
two-letter state abbreviation. WV and DE are presented in light gray as they have no satellite resolvable water at a spatial resolution of 300 m. See Fig. S4 for 
years 2008–2011. 
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states, Maine and Michigan, shifted in strength where spatial extent 
increased moderately when all data were used but increased negligibly 
when 30% of weekly composites were randomly omitted. 

To test the influence of integrating Sentinel-3B with Sentinel-3A as 
originally processed by NASA OBPG, seasonal Mann-Kendall statistics 
were reported for each CONUS state as a demonstration. Combined 
Sentinel-3A and -3B spatial extent from 2017 to 2020 (Table S3) had 
strong increases (|τ| ≥ 0.5) in spatial extent in New Jersey (32.50%), 
Louisiana (25.18%), Michigan (13.64%), and South Dakota (5.58%). In 
decreasing order of change in spatial extent over the time period, Mas
sachusetts (47.75%), Maine (22.79%), Florida (22.54%), Rhode Island 
(21.08%), New Hampshire (19.05%), Nevada (16.04%), Arizona 
(10.44%), Oregon (10.11%), North Carolina (7.34%), Alabama (5.08%), 
Montana (4.96%), and California (3.88%) all increased with moderate 
strength (0.3 ≤ |τ| < 0.5). Only Indiana, Iowa, Mississippi, North 
Dakota, and Ohio decreased; however, all had changes with negligible 
(|τ| < 0.2) to weak (0.2 ≤ |τ| < 0.3) strengths. Inclusion of the merged 
Sentinel-3A and -3B results increased all state spatial extent changes 
over time by an mean of 3.72% ± 0.03%, but the Mann Whitney U test 
indicated that these changes were not significantly different (U =
1318.5, n1,2 = 48, rrb = 0.25) when compared to results computed using 
only Sentinel-3A (Fig. S15). State-scale τ strengths were also not 
significantly different (U = 1329.5, n1,2 = 48, rrb = 0.26) when merged 
Sentinel-3A and -3B results were compared to results generated using 
only Sentinel-3A. Twenty-six states with a weak or negligible τ strength 
remained weak or negligible. Twelve states with moderate or strong τ 
strength remained moderate or strong. Only 8 of the 46 states changed 
from weak or negligible to moderate τ strength. 

4. Discussion 

Temporal changes in cyanoHAB spatial extent across CONUS for a 
period of 2017–2020 (Fig. 4) and 2008–2011 (Fig. S3) were evaluated. 
We provide the first national-, regional-, state-, and lake-scale maps of 
cyanoHAB spatial extent across CONUS, relevant to management de
cisions for states and local organizations. As measured by satellite, 
cyanoHAB spatial extent had a strong increase of 6.92% during 
2017–2020, whereas we found no indication of a strong or moderate 
national-scale change during 2008–2011. A bimodal response with a 
peak in spring preceding a summer maximum is consistent with 

phytoplankton seasonal cycles (Winder and Cloern, 2010). The 
approximate 4-year temporal gap from 2012 to 2016 between MERIS 
and OLCI limited extrapolation of longer-term change assessment 
analysis. 

Although Ho et al. (2019) reported an overall global increase of 
freshwater phytoplankton blooms from 1984 to 2012, further separation 
of the seven U.S. lakes in their study revealed a mixed response. Six of 
the seven United States lakes considered by Ho et al. (2019) were 
included in this study. In Ho et al. (2019), improvements were seen in 
Clear Lake, CA; no change was seen at Salton Sea Lake, CA, Winnebago 
Lake, WI, or Walker Lake, NV; and deterioration was seen in Great Salt 
Lake, UT, and Lake Okeechobee, FL. As Figs. 5 through 8 clearly indi
cate, sub-national variability is high across CONUS both spatially and 
temporally. Ignoring region-, state-, and lake-scale patterns to focus only 
on the national-scale result may mislead interpretations of cyanoHAB 
change and status in the United States. In addition, these changes may 
not be entirely due to natural or climatic influences, as there may be 
artificial treatments of these lakes such as various chemical methods 
(Jancula and Marsalek, 2011), physical or biological methods (Zhang 
et al., 2020), or even nutrient enrichment (Lin et al., 2021). 

When spatial extent was scaled to regions, rates of change had mixed 
responses during the 2008–2011 (MERIS) time period and increased 
spatial extent during 2017–2020 (OLCI). Ho et al. (2019) reported that 
lake warming may be important for global freshwater phytoplankton 
blooms. Lake temperature and precipitation have been found to be 
important drivers in many other cyanoHAB studies (Ho and Michalak, 
2020; Myer et al., 2020; Paerl and Paul, 2012). El Niño Southern 
Oscillation patterns were similar for both the MERIS and OLCI time 
periods—La Niña occurring the first year, a switch from La Niña to El 
Niño the second year, a continuation of El Niño the third year to either 
La Niña in 2010 or normal conditions in 2019, and La Niña occurring the 
final year (NOAA, 2021). 

State-scale temporal frequency of cyanoHABs was previously re
ported for the OLCI and MERIS time periods (Coffer et al., 2021a). 
Briefly, the temporal frequency metric was computed as the percentage 
of weekly satellite composites exhibiting cyanobacterial presence also 
with a CIcyano > 0.0001 relative to the total number of weekly satellite 
composites that contained a valid measurement. Generally, states with 
higher temporal frequency presented in Coffer et al. (2021a) had higher 
spatial extent in this study (Fig. 5 and S3), although this was not always 

Fig. 6. Change in spatial extent in each CONUS state for 2017–2020 based on results from the seasonal Mann-Kendall test. Each state is represented as a hexagon 
labeled with each state’s two-letter state abbreviation. WV and DE have no results as they have no satellite resolvable water at a spatial resolution of 300 m. Color of 
circles illustrates change over time period, where brown indicates a decrease in bloom area during 2017–2020 and shades of green indicate an increase; size of circles 
represent categorical Kendall τ, where |τ| < 0.2 denotes a negligible change, 0.2 ≤ |τ| < 0.3 denotes a weak change, 0.3 ≤ |τ| < 0.5 denotes a moderate change and 
|τ| ≥ 0.5 denotes a strong change. See Supplemental Fig. S5 for years 2008–2011. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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a one-to-one relationship. It was expected that some locations would 
have events with both low and high temporal frequency, and would 
occur across different proportions of spatial extent area. The state-scale 
standard deviations (Fig. 5B) are relatively small, which supports 
interannual stability and consistency amongst years in Fig. 7. 

From 2017 to 2020, there were 12 states that had a strong or mod
erate increase in cyanoHAB spatial extent (Fig. 6). From 2008 to 2011, 
one state had a change assessment that showed a moderate increase in 
spatial extent, and two states had a moderate decrease, with all other 
states having negligible or weak strength changes (Fig. S4). States that 

exhibited a decrease or no change should not be considered as lacking 
cyanoHAB issues; for example, Maine had a decrease in cyanoHAB 
extent during 2008–2011 and yet >75% of resolvable water area had 
detectable cyanoHABs during that time period (Fig. S3). Further, sta
tistics are derived from a constrained period of four-year cycles and 
many of the γ values indicated that more than four years of data would 
be needed for an observed change to be sustained given the residual 
variability in the data. These results are consistent with those from South 
Africa (Matthews, 2014), where findings show that the overall change in 
cyanoHAB coverage in 50 large waterbodies remained uncertain, with 
an approximately equal number of lakes significantly increasing and 
decreasing in eutrophication and cyanobacteria using MERIS data from 
2002 to 2011. Similarly, Hallegraeff et al. (2021) found contrasting 
regional changes in the distribution of marine HAB events over time, 
after adjusting for regional variations in monitoring effort. 

Comparing changes in cyanoHAB spatial extent with those presented 
for the states of Florida, Ohio, and California in Urquhart et al. (2017) 
reveals some minor differences attributed to modifications in the change 
assessment method used. Here we used spatial extent, expressed as 
percentage area bloom (%), instead of area bloom (km2) used in the 
previous study. Use of percentage area bloom reduces pixel availability 
bias by dividing bloom area by resolvable water area instead of total 
water area. This captures the dynamic nature of clouds, snow, and ice on 
resolvable water area. Coffer et al (2021a) tested whether reduced ob
servations from snow and ice biased results in regions with more snow 
and ice, given observations were more likely in warmer months when 
cyanoHABs were more likely to occur. That study reported most regions 
were unbiased, only with a large bias in the Northwest Rockies and 
Plains (Wilcoxon signed-rank effect size 0.53) and moderate biases for 
the Ohio Valley (effect size 0.39) and the Southeast (effect size 0.42) 
regions. Further, we used monthly mean of the weekly maximums rather 
than the monthly maximum of the weekly maximums for temporal 
analysis. Monthly means likely offer a better representation of cyano
HAB events over longer periods of time such as a month. Lastly, the 
spatial footprint of the Florida MERIS imagery now encompasses the 
entire state, including lakes that were omitted from the original analysis. 
However, NHDPlus rivers and streams are excluded, including the lower 
St. Johns River—a Florida river system that exhibited a strong statistical 
increase in cyanoHAB spatial extent during 2008–2011 in the original 
analysis. Florida and California show little difference in the direction 
and strength of their MK values between this study and Urquhart et al. 
(2017). The direction of change in spatial extent across Ohio’s lakes was 
different (decreasing in Urquhart et al. (2017) but increasing in this 
study from 2008 to 2011), however, the calculated changes in both 
analyses were small relative to the high variability in the datasets and 
the Urquhart et al. (2017) study did not include a snow and ice mask. 

In the current study, spatial variability within lakes was consistent 
within a lake year-over-year. Therefore, variability is primarily due to 
spatial variation between lakes (Fig. 8 and S4-S10) and not due to 
temporal variation within lakes for both the MERIS and OLCI time pe
riods. A similar pattern was demonstrated with national lake temporal 
frequency (Coffer et al., 2021a). The number of lakes had a noticeable 
shift in the lowest quarter (0–25% cyanoHAB spatial extent) from the 
MERIS to OLCI time periods which could be due to either sensor dif
ferences in the minimum detection limit or actual ecological changes. 

Because continuous, full resolution acquisitions across CONUS are 
only available for 2017–2020 and 2008–2011, the assessment results are 
limited by the short time interval with only four years of data from each 
sensor and may be influenced by climate, anomalous bloom events, and 
data availability due to cloud cover (Clark et al., 2017; Coffer et al., 
2020). Although four years is a short time period, evidence of change 
detection in this short time frame has been previously documented 
(Psilovikos et al., 2006; Kim et al., 2009; Coffer et al., 2021b). Sensitivity 
analysis results of randomly omitting daily CONUS scenes prior to 
temporal binning indicate that even with reducing data availability 
during a short four-year temporal assessment, the direction and strength 

Table 2 
Seasonal Mann-Kendall statistics for changes in monthly cyanobacteria spatial 
extent spanning 2017–2020 for each CONUS state with at least one resolvable 
lake (see Fig. 3). Bold values represent moderate (0.3 ≤ |τ| < 0.5) through strong 
(|τ| ≥ 0.5) seasonal Kendall τ strength. Change in spatial extent over time period 
represents the change in spatial extent (%) over the entire time period spanning 
2017–2020. The γ statistic is an estimate of the number of years of observations 
required for the observed change to outweigh variability in the data. See Sup
plemental Table S1 for years 2008–2011.  

State name State 
abbreviation 

Sample 
size 

Change in 
spatial 
extent over 
time period 

Kendall’s 
τ 

γ (yr) 

Alabama AL 48 2.32% 0.18 7.02 
Arizona AZ 48 8.09% 0.36 4.38 
Arkansas AR 48 − 6.59% 0.22 6.45 
California CA 48 1.96% 0.19 19.4 
Colorado CO 47 14.02% 0.24 3.90 
Connecticut CT 47 0% 0.05 N/A* 
Florida FL 48 15.06% 0.31 4.45 
Georgia GA 48 3.72% 0.19 5.32 
Idaho ID 46 3.23% 0.26 15.04 
Illinois IL 48 6.52% 0.11 14.18 
Indiana IN 48 − 2.67% 0.06 23.13 
Iowa IA 45 − 10.24% 0.13 10.75 
Kansas KS 48 3.91% 0.08 20.39 
Kentucky KY 48 0.46% 0.13 53.31 
Louisiana LA 48 17.8% 0.53 2.84 
Maine ME 42 10.73% 0.30 7.72 
Maryland MD 48 0% 0.15 N/A* 
Massachusetts MA 48 42.38% 0.39 2.33 
Michigan MI 47 10.50% 0.38 3.68 
Minnesota MN 40 3.52% 0.11 24.17 
Mississippi MS 48 − 6.16% 0.14 14.65 
Missouri MO 48 11.84% 0.17 3.83 
Montana MT 45 3.98% 0.37 5.31 
Nebraska NE 46 0.98% 0.02 55.88 
Nevada NV 48 11.8% 0.28 5.00 
New 

Hampshire 
NH 39 14.22% 0.33 5.41 

New Jersey NJ 48 24.75% 0.51 3.14 
New Mexico NM 48 5.87% 0.24 7.17 
New York NY 48 3.07% 0.17 13.88 
North Carolina NC 48 3.20% 0.22 14.14 
North Dakota ND 38 − 1.70% 0.17 18.29 
Ohio OH 46 − 6.17% 0.15 13.98 
Oklahoma OK 48 2.68% 0.1 14.41 
Oregon OR 48 8.09% 0.42 8.07 
Pennsylvania PA 47 − 4.63% 0.12 15.72 
Rhode Island RI 48 16.63% 0.29 5.83 
South Carolina SC 48 0.29% 0.07 44.06 
South Dakota SD 41 4.01% 0.48 6.38 
Tennessee TN 48 − 2.54% 0.18 8.11 
Texas TX 48 − 0.49% 0.03 83.60 
Utah UT 48 1.30% 0.14 21.89 
Vermont VT 46 4.60% 0.38 5.40 
Virginia VA 48 0.49% 0.06 73.84 
Washington WA 48 4.89% 0.17 8.11 
Wisconsin WI 43 0% 0 N/A* 
Wyoming WY 43 3.26% 0.20 12.37 
CONUS  48 6.92 0.56 2.87 

*The γ statistic requires the change in spatial extent over the time period as the 
denominator; thus, with a change of 0%, γ was not computed. 
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of the changes in spatial extent remained consistent in states with 
moderate and strong τ values (Table 3). 

The ongoing OLCI archive provides potential for longer-term 
assessment as the data record increases with time. Sentinel-3A data 
became available during the latter part of 2016, with the first full cal
endar year covered in 2017. NASA OBPG integrated Sentinel-3A and -3B 
into the processing stream beginning May 15, 2018. Sentinel-3C and -3D 
are scheduled for launch in 2024 and 2028, respectively. Spatial extent 
changes and τ strengths were not significantly different after the inclu
sion of the Sentinel-3B compared to only Sentinel-3A (Fig. S15). Satellite 
water quality long-term analyses have focused on transitioning from one 
satellite to the next satellite creating time series for spatially continuous 
ocean waters (Kahru et al., 2012; Mélin, 2016; Melin et al., 2017). The 

merging of Sentinel-3A and -3B as well as the future inclusion of 
Sentinel-3C and -3D fills temporal and spatial observations across 
spatially discontinuous inland systems at increasing data densities. 
However, influence of changing data densities across spatially discon
tinuous systems for long-term analysis could be considered in future 
work. 

Although the ability to quantify changes in inland cyanoHABs at 
national-, regional-, state-, and lake-scales using satellite data was 
demonstrated here, it is important to note the operating boundaries of 
this work. First, the spatial resolution of the MERIS and OLCI satellite 
datasets is relatively low (300 m × 300 m), as becomes apparent when 
measuring nearshore pixels and when calculating the number of 
resolvable waterbodies across CONUS. Results are from a subset of the 

Fig. 7. Spatial extent for each CONUS state for 2017–2020. Each state is represented as a hexagon labeled with each state’s two-letter state abbreviation. WV and DE 
are presented in gray as they have no satellite resolvable water at a spatial resolution of 300 m. See Supplemental Fig. S6 for years 2008–2011. 

Fig. 8. Median annual spatial extent for each resolvable lake for the year 2020. Each point represents a lake centroid. See Supplemental Fig. S7-S9 for years 
2017–2020 and Supplemental Fig. S10-S13 for years 2008–2011. 
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Nation’s lakes—specifically, larger lakes and reservoirs. Higher- 
resolution sensors such as those on Landsat-8 and Sentinel-2 may pro
vide assessment for smaller waterbodies in the future as tailored cya
noHAB detection methods for those instruments mature. Another 
potential limitation occurs when a cyanoHAB is mixed vertically in the 
water column. Wind and wave action affect the detection via satellites 
by mixing the biomass vertically in the water column or horizontally 
either along the shoreline or into the center of the lake (Rogalus and 
Watzin, 2008; Cuypers et al., 2011; Gonzalez-Piana et al., 2018). These 
physical forces affect the ability of the satellite to detection biomass 
(Kutser et al., 2008). Theoretically, lakes with wind and hydrological 
forces in the same direction may advect biomass along the shoreline 
beyond the detection of the satellite (Chorus et al., 2000; Rogalus and 

Watzin, 2008). The spatial resolution of MERIS and OLCI along with 
flags that mask the land–water interface limit measures along these 
shorelines. Lakes with wind and hydrologic forces in opposing di
rections, or lower energy, may have biomass toward the center of the 
system or biomass may be vertically mixed. As we are using satellite 
sensors that detect in the near-infrared and red wavelengths of the 
electromagnetic spectrum, whole lake cell density can be under
estimated when a bloom is distributed throughout the water column, or 
biomass may be missed if completely below the satellites depth of 
detection. The near-infrared and red wavelengths often used in cyano
bacteria detection attenuate rapidly with depth and therefore do not 
penetrate as deep into the water column compared to green and blue 
wavelengths (Kirk, 1994). CIcyano characterizes the upper layer of the 
water column, including depths up to 2 m in clear water (Mishra et al., 
2005) and <2 m in more turbid water (Wynne et al., 2010). The CIcyano 
algorithm has uncertainty where validations demonstrated 84% overall 
agreement against state reported toxin data (Mishra et al., 2021), 73% 
overall agreement against state reported events and advisories (Whit
man et al., 2022), and 60% mean absolute error with 11% bias against 
chlorophyll-a at the national scale (Seegers et al., 2021). 

Recent OLCI calibration efforts have revealed a 1–1.5% brightness 
bias between Sentinel-3A and -3B, but the spectral consistency in this 
bias is not expected to affect the CIcyano calculation (OLCI ESL, 2019). 
Wynne et al. (2021) recently reported a method to intercalibrate MERIS 
and OLCI to NASA’s Moderate Resolution Imaging Spectroradiometer 
(MODIS) across the Great Lakes, where OLCI CIcyano underestimated 
MERIS CIcyano by 6%. That calibration might reasonably apply to many 
other lakes, given the ecological and geographic separation between the 
three water bodies investigated. The OLCI CIcyano underestimation 
relative to MERIS was not necessarily an issue in this study because all 
the CIcyano derived values were categorized as detections. The quanti
fication of a minimum detection limit for both the OLCI and MERIS 
sensors was relevant to this study to determine if CIcyano was detecting 
cyanobacteria biomass at the same minimum level between the two time 
periods. MERIS and OLCI are two different sensors during two different 
time periods, and therefore the measured temporal change was con
strained to each respective time period without interpretation of change 
during the gap years. Satellite sensor radiometric instrument drift was 
also a potential limitation, where current OLCI radiometric gain model 
performance was reported within 0.1% root mean square (Bourg et al., 
2021). 

The findings of this study and the approaches used to provide them 
pave the way for future inland cyanoHAB assessments. These results 
build upon the findings from numerous studies (Andersen et al., 2017; 
De Bakker et al., 2017; Svirčev et al., 2017; Xu et al., 2017; Ho et al., 
2019) on inland waters by using satellite data to extend temporal 
assessment for cyanobacteria blooms to a national and state scale and 
across numerous waterbodies. On a broader scale, the temporal assess
ment method demonstrated here can be applied to other satellite sen
sors, different cyanobacteria detection algorithms, and to other lakes in 
countries experiencing inland cyanobacteria dominance. This work 
provides an opportunity for each state to have a uniform satellite dataset 
(Schaeffer et al., 2015) and a consistent approach for determining the 
spatial extent and rate of change of cyanoHABs, year-to-year, with long- 
term operational satellites. Further, this study reinforces the value that 
satellite remote sensing can add to in situ water quality monitoring 
programs to quantitatively evaluate change. 

The analysis of drivers was beyond the scope of a single paper but has 
been reported through other analyses using the same satellite data time 
series (Myer et al., 2020; Iiames et al., 2021). Briefly, Iiames et al (2021) 
reported variable importance for 75 landscape and lake physiographic 
predictor variables including nutrients, land use, artificial drainage, 
buffer space, precipitation, and temperature. The top ten predictor 
variables were artificial drainage, percent area forest, soil erodibility, 
subsurface nitrogen-ammonia application rate, percent evergreen forest, 
percent area row crop, surface nitrate application rate, runoff, percent 

Table 3 
Seasonal Kendall’s τ values highlighting strength of change in monthly cyano
bacteria spatial extent spanning 2017–2020 for each CONUS state with at least 
one resolvable lake at 10, 20, and 30% random weekly composite omission. Bold 
values represent moderate (0.3 ≤ |τ| < 0.5) through strong (|τ| ≥ 0.5) seasonal 
Kendall τ strength.  

State 
name 

State 
abbreviation 

τ (from  
Table 2) 

τ (10% 
data 
omission) 

τ (20% 
data 
omission) 

τ (30% 
data 
omission) 

AL Alabama 0.18  0.19 0.21 0.42 
AR Arkansas 0.22  − 0.19 − 0.12 − 0.23 
AZ Arizona 0.36  0.36 0.36 0.33 
CA California 0.19  0.19 0.25 0.23 
CO Colorado 0.24  0.24 0.26 0.33 
CT Connecticut 0.05  − 0.04 − 0.08 0.08 
FL Florida 0.31  0.33 0.39 0.30 
GA Georgia 0.19  0.11 0.17 0.10 
IA Iowa 0.13  − 0.20 − 0.15 − 0.27 
ID Idaho 0.26  0.22 0.30 0.29 
IL Illinois 0.11  0.06 0.03 0.10 
IN Indiana 0.06  − 0.07 − 0.09 − 0.10 
KS Kansas 0.08  0.08 0.09 0.07 
KY Kentucky 0.13  0.06 0.09 0.18 
LA Louisiana 0.53  0.50 0.44 0.42 
MA Massachusetts 0.39  0.36 0.56 0.33 
MD Maryland 0.15  0.14 0.15 0.06 
ME Maine 0.30  0.26 0.30 0.25 
MI Michigan 0.38  0.41 0.35 0.15 
MN Minnesota 0.11  0.25 0.13 0 
MO Missouri 0.17  0.11 0.19 0.23 
MS Mississippi 0.14  − 0.14 − 0.14 − 0.14 
MT Montana 0.37  0.38 0.38 0.33 
NC North 

Carolina 
0.22  0.19 0.22 0.22 

ND North Dakota 0.17  − 0.13 ¡0.38 − 0.20 
NE Nebraska 0.02  − 0.03 − 0.04 − 0.11 
NH New 

Hampshire 
0.33  0.29 0.38 0.39 

NJ New Jersey 0.51  0.48 0.48 0.56 
NM New Mexico 0.24  0.25 0.25 0.33 
NV Nevada 0.28  0.28 0.28 0.52 
NY New York 0.17  0.14 0.03 0.07 
OH Ohio 0.15  − 0.20 ¡0.33 ¡0.30 
OK Oklahoma 0.10  0.11 0.08 − 0.06 
OR Oregon 0.42  0.42 0.50 0.56 
PA Pennsylvania 0.12  − 0.10 − 0.15 − 0.19 
RI Rhode Island 0.29  0.33 0.39 0.33 
SC South 

Carolina 
0.07  − 0.03 0 − 0.10 

SD South Dakota 0.48  0.43 0.33 0.42 
TN Tennessee 0.18  − 0.28 − 0.19 ¡0.30 
TX Texas 0.03  − 0.11 0.03 − 0.03 
UT Utah 0.14  0.21 0.13 0.07 
VA Virginia 0.06  0.07 0.08 − 0.01 
VT Vermont 0.38  0.44 0.48 0.42 
WA Washington 0.17  0.25 0.15 0.10 
WI Wisconsin 0  − 0.10 − 0.11 0 
WY Wyoming 0.20  0.22 0.11 0.10       

CONUS  0.56  0.47 0.44 0.44  
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area evergreen forest within a 90-m lake buffer, and percent sinks that 
treat agriculture (Iiames et al., 2021). Myer et al (2020) reported surface 
water temperature, ambient temperature, precipitation, and lake geo
morphology as important covariates. Wilkinson et al. (2021) reported a 
similar lack of intensification across 323 lakes (Soranno et al., 2015) in 
the upper Midwest and northeastern United States between 2000 and 
2012, supporting the mixed spatial extent responses during the 
2008–2011 time series presented in this study and highlighting the 
importance of acknowledging the temporal limitations in these assess
ments. Integration of local-scale models may further elucidate causative 
changes in the water and sediment quality of lake environments such as 
nutrient enrichment and minerology that may either initiate or sustain 
cyanoHAB events (Santhanam et al., 2018). Further analysis may also 
benefit from local scale assessments of built infrastructure such as 
impervious surfaces and urbanization rates (Santhanam and Majumdar, 
2022). Hence, the spatial extent of these events may vary depending on 
the degree of nutrient cycling and landscape influence; however, access 
to real time nutrient data at the same scale as the satellite data is 
currently a limiting observation. 

5. Conclusions 

We used an assessment method combined with satellite remote 
sensing data to quantify the spatial extent of cyanobacterial blooms 
across the contiguous United States. Cyanobacteria spatial extent varied 
seasonally, reaching maximum spatial extent during late summer into 
autumn (August-October). There was a strong national and moderate 
South and Southeast regional increases in cyanoHAB spatial extent 
during 2017–2020, but there was no ubiquitous increase or decrease in 
cyanoHAB spatial extent during 2008–2011 at the national or regional 
scales. There were 12 states with strong or moderate increases during 
2017–2020, while only one state had a moderate increase in spatial 
extent during 2008–2011 and two states with a moderate decrease. 
CyanoHAB spatial extent changes varied dependent on spatial and 
temporal scales considered. A decrease, or no change, in cyanoHAB 
surface area extent does not indicate a lack of issues related to cyano
HABs. This study is the first to quantify the spatial extent of cyanoHABs 
for lakes across CONUS with a standard assessment method to report 
rates of change as a consistent indicator metric. These findings can be 
used to help prioritize events and quantify if cyanoHABs are increasing, 
decreasing, or remain unchanged. As previously reported, these satellite 
metrics may help inform recreational, drinking, and water quality 
management in metropolitan and rural areas across federal, state, and 
tribal lands (Papenfus et al., 2020; Stroming et al., 2020; Coffer et al., 
2021b). This may result in improved environmental, human, and animal 
health protection. 
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